
UCRL-TM-229498

RadSrc/Monte Carlo Code Interface Manual

The RadSrc development team
Lawrence Livermore National Laboratory

February 16, 2007

Abstract

RadSrc (“Rad-Source”) is a library for calculating gamma ray distributions. An initial material spec-
ification is aged and the daughter isotopes calculated to create the complete spectrum. RadSrc can be
linked into, initialized, and called from other programs. This document specifies how to do this in
GEANT4, COG and MCNP(X). The software library and interfaceexamples can be downloaded from
http://nuclear.llnl.gov/CNP/simulation.

1 Configuring GEANT4 to use RadSrc

The user will need to have access to a GEANT4 installation. Itis assumed that the user can already run
a GEANT4 job. Download the RadSrc library to your computer. In the src directory type gmake in order
to create the libradsrc.a file.It is highly recommended that you determine what compiler the GEANT4
installation is using and modify the RadSrc Makefile to use the same compiler.

Thegeant directory in the RadSrc release contains a sample GEANT4 jobwhich accesses the radsrc
library and runs a 10kg uranium ball problem. Typesource setup to create the RadSrc environment
variables needed by the Makefile and the code. If you have GEANT4 installed on your system and the
GEANT4 environment variables are set then you should be ableto typegmake to create an executable. An
executable file calledexampleN01 should be located in thebin directory.

Typebin/[system type]/exampleN01 <example.in to run the program.
The GEANT4 GNU makefile has been modified to link in the RadSrc libraries through the addition of

two line:

EXTRALIBS += -L$(RADSRC_HOME)/lib/ -lradsrc
CPPFLAGS += -I$(RADSRC_HOME)/src/libradsrc/

The environment variableRADSRC_HOME is defined in the setup routine along with the variable
RADSRC_LEGACYDATAwhich points to the RadSrc data files.

2 Calling RadSrc from within GEANT4

The RadSrc routines are called from within theExN01PrimaryGeneratorActionclass which handles
event generation for the problem. In the header files we include the RadSrc header files:

1



#include "radsource.h"
#include "cpp_api.h"

and create some pointers variables that will point to instances of the RadSrc class,

radsrc::CRadSource* pRadSource;
radsrc::CRadSource* t1RadSource;
radsrc::CRadSource* t2RadSource;

the RadSrc routines live in the namespaceradsrc:: in order to prevent conflicts with geant4 classes.
To create a new instance of RadSrc one calls,

t1RadSource = radsrc::CApi::newSource();

The instance of RadSrc must then be initialized with a problem definition. A number of ways to do that are
provided. One way is to create a text file with the problem definition and pass the location of that file to the
LoadConfigmember function.

t1Good = radsrc::CApi::loadConfig(t1RadSource, (const std::string) FileName);

If a NULL string is passed the program will look for the environment variableRADSRC_CONFIG to find
the input text file.

The text file must be in the form of,

U235 90.0
U238 10.0
AGE 20.0

where the fraction of each isotope is specified and should addup to 100%. To allow for problems with
contamination the fractional sum can be slightly greater than 100%. The last line in the file should be an
AGE card with the age given in years.

Additionally, the problem specification can be passed as input lines to the code,

radsrc::CApi::addConfig(t2RadSource, ‘‘U235 90.0’’);
radsrc::CApi::addConfig(t2RadSource, ‘‘U238 10.0’’);
radsrc::CApi::addConfig(t2RadSource, ‘‘AGE 20.0’’);
t2Good = radsrc::CApi::sourceConfig(t2RadSource);

where theaddConfigmember function accepts text lines of input and thesourceConfigprocesses the
input and performs the RadSrc calculations and setup.

Once the problem is specified the gamma-ray distributions can be sampled with a call to:

G4double energy = radsrc::CApi::getPhoton(pRadSource, localran ) * keV;

The function returns an energy in keV. The functionlocalran is a wrapper for the standard GEANT4
random number generatorG4UniformRandom.

The RadSrc problem can also be specified from the GEANT4 command line through the commands
defined in theExN01PrimaryGeneratorMessenger class. They duplicate from the command line
what is available in the code.

/radsrc/file ’./problem.in’

2



reads the problem definition from the specified file

/radsrc/file ’’

will look for the environment variableRADSRC_CONFIG to find the input text file. The complete problem
specification can also be passed on the command line by using

/radsrc/input U235 90.0
/radsrc/input U238 10.0
/radsrc/input AGE 20.0
/radsrc/update

The GEANT4 code is set up so that theExN01PrimaryGeneratorAction class will try to find
a RadSrc input text file at instanciation. A constructor function is provided which passes a string which
specifies the file location. SeeexampleN01.cc for an example. That definition can be overridden from
the command line. If no problem definition is specified the program will terminate at the first event.

3 Calling RadSrc from within FORTRAN

COG and MCNP(X) provide dummy source subroutines called IsoP.F and source.F90, respectively, which
can be used to call the RadSrc routines. While RadSrc is native C++, a number of Fortran callable sub-
routines are provided to allow Fortran code to use the package. All routines names begin withRS in order
to prevent accidental conflicts with the Monte Carlo code. Multiple instances of the RadSrc library can be
created to model multiple sources. Simply provide a different handle for each case. Inside the subroutine
define the variables and functions that the library will use.

INTEGER*8 HANDLE
LOGICAL SUCCESS, RSLOADCONFIG, FIRST, RSSOURCECONFIG
REAL*8 RSGTRPHOTON

EXTERNAL RSLOADCONFIG, RSGTRPHOTON, RSADDCONFIG, RSSOURCECONFIG

COMMON /rscommon/ HANDLE, FIRST
DATA first /.true./

During the first pass through the subroutine an instance of the RadSrc library is created and the problem
specified.

IF(FIRST)THEN
FIRST=.FALSE.
CALL RSNEWSOURCE(HANDLE)
SUCCESS = RSLOADCONFIG(HANDLE,’./problem.in’)
IF (SUCCESS .NEQV. .TRUE.) THEN

PRINT *, ’Error setting up problem’
STOP

ENDIF
endif

3



The subroutineRSNEWSOURCE(HANDLE) creates an instance of the RadSrc library and returns a pointer
to it. The specification of the problem is held in a text file of the form:

U2325 90.0
U238 10.0
AGE 20.0

where the fraction of each isotope specified and should add upto 100%. To allow for problems with contam-
ination the fractional sum can be slightly greater than 100%. The last line in the file should be an AGE card
with the age given in years. The subroutineRSLOADCONFIG(HANDLE,’./problem.in’) reads in
the specified problem definition file and performs the problemcalculations and setup. It returns.FALSE.
if there is a problem. IfRSLOADCONFIG(HANDLE,’’) is specified with a null string then the code will
check the environment variable

setenv RADSRC_CONFIG [path to text file with problem specification]

for the location of the input file.
Alternatively, the problem specification can be passed as strings using theRSADDCONFIG and

RSSOURCECONFIG subroutines as shown:

CALL RSADDCONFIG(HANDLE,’U234 0.00071’)
CALL RSADDCONFIG(HANDLE,’U235 0.182’)
CALL RSADDCONFIG(HANDLE,’U236 0.00284’)
CALL RSADDCONFIG(HANDLE,’U238 99.814’)
CALL RSADDCONFIG(HANDLE,’AGE 15’)
SUCCESS = RSSOURCECONFIG(HANDLE)

Finally, after the problem has been set up, the user can call the subroutineRSGTRPHOTON(HANDLE,RNG)
to sample the photon distribution and return an energy value. The native random number generator is passed
to the subroutine so that the Monte Carlo code can maintain control over the random number sequence. The
subroutine returns an energy value in keV.

4 Configuring COG to use RadSrc

The user will need to have access a COG installation. Download the RadSrc library to your computer. In the
src directory type gmake in order to create the libradsrc.a file. It is highly recommended that you determine
what compiler the COG installation is using and modify the RadSrc Makefile to use the same compiler.

COG provides the capability to compile a user source routineand dynamically link it into the COG
executable. Make a directory containing the makefileCOGUserlib.make and the user source subroutine
IsoP.Fwhich can be found in theusrdet directory of your COG release. The makefile must be modified
to link in the RadSrc library. Modify theLDOPTS variable to add:

LDOPTS = ... -L$(RADSRC_HOME)/lib/ ... -lradsrc -lstdc++

This is correct for the intel compiler. Other compilers may require different libraries. The environment
variableRADSRC_HOME should be set to point to your installation of RadSrc. As the RadSrc library is
written in C++ one must also link in thestdc++ library.

At this point you can try to link the COG user library to ensurethat the libraries are being properly
linked. In order for the RadSrc library to be able to find its data files an environment variable must be set:

setenv RADSRC_LEGACYDATA $(RADSRC_HOME)/data/

4



5 Options Unique to COG

The IsoP.F subroutine can also be configured to accept input from the COG input file. Using the code
fragment:

IF(FIRST)THEN
FIRST=.FALSE.
CALL RSNEWSOURCE(HANDLE)
DO 99 I=1,NARGS
CALL RSADDCONFIG(HANDLE,ARGA(I))

99 ENDDO
SUCCESS = RSSOURCECONFIG(HANDLE)
IF (SUCCESS .NEQV. .TRUE.) THEN

PRINT *, ’Error setting up problem’
STOP

ENDIF
endif

the COG user source input will be passed to the RadSrc library. Setup up the source specification in the
COG input file with the following format:

source
usrsor IsoP
U235 90.0
U238 10.0
AGE 15.0

Due to the limitations of the COG input parser none of the individual words in the input can be longer than
8 characters.

6 Configuring MCNP to use RadSrc

The user will need to have access to and be able to recompile the MCNP source code. Download the RadSrc
library to your computer. In the src directory type gmake in order to create the libradsrc.a file.It is highly
recommended that you determine what compiler the MCNP installation is using and modify the RadSrc
Makefile to use the same compiler.

The MCNP Makefiles must be modified to link in the RadSrc libraries. In the Source directory there is a
master makefile and in the config directory there are platformspecific makefiles. In the appropriate makefile
for your installation add a line:

EXTRALIBS = -lstdc++ -L$(RADSRC_HOME)/lib/ -lradsrc

As the RadSrc library is written in C++ one must also link in the stdc++ library. To allow the program to
see the class definitions add a path to the C++ headers by modifying

INCLUDE_DIRS = -I$(RADSRC_HOME)/src/libradsrc/

Ensure that the environment variableRADSRC_HOME points to your copy of the RadSrc installation. At this
point you can try to relink the MCNP executable to ensure thatthe libraries are being properly linked. In
order for the RadSrc library to be able to find its data files an environment variable must be set:

5



setenv RADSRC_LEGACYDATA $(RADSRC_HOME)/data/

6


